I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|----------------|--------------------------|---|-----------------| | 01 | Thermodynamics | Abhinar Kumar
(894) | Thermodynamics system | 29-10-16 | | | | | * Meaning of system * Types of systems * Basic concepts (Definitions understanding) * Control volume, states, cycle, process etc. | | | 02 | Thermodynamics | Abhinav Shuklar (896) | 1st law of Thermodynamics | 29-10-16 | | | | | * Heat & work concept * Law of conservation * Understanding of 1st law along with definition or equation | | | 03 | Thermodynamics | Jigjanshu Kumar
(298) | 2nd law of Thermodynamics | 29-10-15 | | | | (898) | * Definition of Law and equations * Different statements (Kelvin-plank, clauses) * Relation with 1st law * Operation in daily life | | | 04 | Thermodynamics | Aman (900) | Heat Engine V/S Heat pump | 29-10-16 | | | | | * Definition along with block diagrams * Difference B/W the working principle of both * Example from day to day life | , | | | | | | | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|----------------|------------------------|--|-----------------| | 05 | Thermodynamics | mayank Razdan
(901) | Law supporting a perfect Gas Equations for perfect Gas Difference b/w perfect Gas, Ideal Gas and other Gases Ideal Gas equation of states | 29-10-16 | | 06 | Thermodynamics | sudhakar A. (891) | Pure substance & Equilibrium * P-V, T-S Diagrams * What do you mean by pure substance & Equilibrium * How to attain Equilibrium * Vapur-liquid-solid phase equilibrium (Explain) | 27-8-16 | | 07 | Thermodynamics | AKash malick
(904) | * What do you mean by Energy and Energy * Difference between these two * Available and unavailable energy | 27-8-16 | | 08 | Thermodynamics | Ritesh Kumar
(913) | Mathematics relations of Thermodynamics * Explain different type of relation - Maxwell Relation - Tds Relations - Chaperon Relation * Their importance and need in Thermodynamics | 27.8~16 | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|----------------|-------------------------|--|-----------------| | 09 | Thermodynamics | Magri mond.
(936) | Explain different types of flow, associated with thermodynamics Their properties, difference b/w them (steady flow, non-steady flow) | 27-8-16 | | 10 | Thermodynamics | Shyam Sundar
(924) | Different types of cycle (part-1) * Explain the different cycle with (p-v, t-s diagram) * Brayton cycle * Stirling cycle * Arccosine cycle | 27-8-16 | | 11 | Thermodynamics | Fahim Ul Islam
(954) | Different types of cycle (part-II) * Explain different cycle with (p-v, t-s diagram) * Otto cycle * Diesel cycle * Atkinson cycle | 10-9-16 | | 12 | Thermodynamics | Pankey Kumer
(906) | * Definition of IC & EC Engine * Different between them * Uses * Properties | 10-9-16 | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|----------------|-----------------------|--|-----------------| | 13 | Thermodynamics | Radhey Shyam
(907) | Two stroke v/s four stroke engine * Meaning of two stroke & four stroke * Difference * Properties * Advantage & Disadvantages | 10-9-16 | | 14 | Thermodynamics | mobile (908) | Patrol v/s Diesel Engine * Meaning of Patrol & Diesel Engine (two & four stroke) * Working principle * Advantage & Disadvantage * Performance & capacity | 10-9-16 | | 15 | Thermodynamics | | * Explanation or working principle * Explanation of figure, p-v, t-s, h-s graphs * Performance & capacity | 10-9-16 | | 16 | Thermodynamics | Raktim (911) | * What do you mean by Reheat cycle * Working Principle * Figure, graphs,. Explanation * Advantages and Disadvantage over other cycles | 10-9-16 | [°]I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan mr. Pankaj | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|--|---|--|-----------------| | 01 | Advanced
Engineering
Mathematics | AKhil S. Pappu
(864)
Diwan Kumar
(831) | Laplace Transform * Introduction * Definition | 127-9-2016 | | | | (031) | * Linearity property * Laplace Transform of some elementary function * Transform of discontinuous function * First shifting property * Heaves ides's shifting theorem * Change of scale property | 16-8-2016 | | 02 | Advanced
Engineering
Mathematics | Yash Verma
(833)
Yogesh Damor
(867) | * Definition * Linearity property * First shifting property * Second shifting property * Change of scale property * Use of partial fractions in L-T * Inverse Laplace transform of derivative - Multiplication by p - Division by p * Convolution theorem - Statement * Application of Laplace transformation to solve differential equations | 06-2-2016 | | | | _ | | _ | |--------------|--------|------|--------|---| | \mathbf{R} | loch | Sam | nester | | | D. | ICUII. | OCII | iesiei | | | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|--|---|--|-----------------| | 03 | Advanced
Engineering
Mathematics | Gurukirat Singh
(870)
Manish Kumar
Rai (834) | * Introduction * Periodic functions * Even and odd function * Euler's formulae - Directly's condition * Fourier series for discontinuous functions * Change of Interval * Half range series * Harmonic analysis - Introduction - Application of harmonic analysis | 17-9-2016 | | 04 | Advanced
Engineering
Mathematics | samarth Tiwari
(875)
shivam Bajtani
(835) | Partial differential equation and its application * Introduction * Order and degree of differential equation * Solution of partial differential equation * Formation of partial differential equation * Application of partial differential equations - Introduction - Method of separation of variables. | 24-9-2016 | | | | ^ | ^ | |----|-------|-----------|--------| | н | IACh | Samacta | کr _ ۲ | | L. | 10011 | . Semeste | 71 TU | | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|--|---|--|-----------------| | 05 | Advanced
Engineering
Mathematics | Surinder Singh
(876)
Yash Mahinder
(838) | Introduction of one dimensional wave and heat equation * Introduction * Solution of the wave equation * Apply initial and boundary conditions * Introduction one dimensional heat flow * Solution of the heat equation * Apply initial and boundary conditions | 24-9-2016 | | 06 | Advanced
Engineering
Mathematics | Kashish Madan
(879)
Ashu Dubey
(947) | Introduction of Laplace equation * Introduction of Laplace equation - Potential theory - Harmonic functions * Definition of rectangular boundaries and circular boundaries * Solution of Laplace equation - Solution of Laplace's equation in Two-dimensional Cartesian form - Solution of Laplace's equation in polar coordinators * Application of Laplace equation in physics and engineering | 24-9-2016 | | - | - 1 | | | _ | |--------------|--------|-------|-------|-----| | \mathbf{P} | loch | . Sem | octor | ٠ ٠ | | D. | ICCII. | OCIL | COLCI | - | | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|--|---|--|-----------------| | 07 | Advanced
Engineering
Mathematics | Sanjay K. Singh
(880)
Aditya K. Ponday
(248) | Introduction of series solution and special functions * Introduction * Definition - Power series - Analytic function - Ordinary point - Regular and Irregular singular points | 15-10-16 | | | | | * Introduction of important differential equations - Bessel's differential equation - Solution of Bessel's equation - Series representation of Bessel functions - Recurrence relations for Jn (x) - Generating functions for Jn (x) - Integral form of Bessel's function | | | | | | * Equations reducible to Bessel's equation * Modified Bessel's equations * Orthogonality Bessel's functions | | | 08 | Advanced
Engineering
Mathematics | Shubham Mishra
(881)
Tarun (953) | , , | 13-10-16 | | | | | * Generation function for Pn (x) * Discussion of recurrence relations * Orthogonality of Legendry polymelias | | | _ | | _ | | _ | |--------------|------|-----|--------|---| | \mathbf{D} | Took | Can | nester | | | | 100 | 201 | 100101 | | | | | | | | | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|--|---|--|------------------| | 09 | Advanced
Engineering
Mathematics | manoj Kumar
(882)
Preet Hilesh
(854) | Introduction of Redirect's formula * Definition * Using Rodrigue's formula to get Legendre's polynomials * Orthogonality of Rodrigue's * Recurrence relations * Beltram's result | 15-10-16 | | 10 | Advanced
Engineering
Mathematics | Sadab Alam
(256) ARKa Y.
(857) | Introduction of solution of Nonlinear equations * Introduction * Introduction Bisection Method * Method of false position * Convergence of regula-falsi method * Introduction of Newton-Raphson method * Convergence * Order of convergence * Geometrical interpretation | 13-8-16 22-10-16 | | 11 | Advanced
Engineering
Mathematics | Sonali (858)
Craurar Sharmar
(877) | | 13-8-16 22-10-16 | 1-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|--|------------------------------------|---|-----------------| | 12 | Advanced
Engineering
Mathematics | 51'm ran (866)
Pranjal (939) | Introduction of Newton's formulae for Interpolation * Newton's Gregory forward Interpolation formula * Newton's Gregory backward Interpolation formula * Interpolation by unevenly spaced points - Lagrange's Interpolation formula - Newton's divided difference Interpolation formula. | 20-8-16 | | 13 | Advanced
Engineering
Mathematics | Purva (868)
Pradeep K.
(945) | Introduction of numerical solution of simultaneous algebraic equation. * Introduction * Types of method to solve such kind of equation - Direct methodsTriangularization method - Interactive methodsCauses-sidle iterative method. | 20~8-16 | | 14 | Advanced
Engineering
Mathematics | shreyash (883)
Aman (946) | Numerical differentiation and Integration . Numerical differentiation Newton's forward difference Interpolation formula. Newton's backward difference Interpolation formula. | 20-8-16 | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|--|--|--|-----------------| | | | | Stirling central difference Interpolation formula Numerical Integration Newton's-cote's Quadrature formula Trapezoidal rule (n=1) Simpson's one-third rule (n=2) Simpson's three-Eight rule (n=3) | | | 15 | Advanced
Engineering
Mathematics | Ashish Kumar
Das (885)
Krishna Kant
(952) | Introduction to ordinary differential equations * Introduction * Initial value and boundary value problems * Single step and multistep methods. * Numerical methods of solution of O.D.E. - Picard's method of successive approximations - Euler's method - Improved Euler's method - Modified Euler's method - Fourth-order Runge-Kutta method | 20-8-2016 | | -04, RII | CO Industrial A | rea, Neemrana, Dist. Alw | var, Rajasthan mr. Pawan Kumar Singh | B.Tech. Semester -3 | |----------|------------------------------------|--|---|---------------------| | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | | 01 | Object
Oriented Prog.
in C++ | NixhiL Jasrotia
Abhishek Mi
(9:37) | Object oriented Languages * C++ * Smallt talk * Charm ++ * Java | 10/9/16 | | 02 | Object
Oriented Prog.
in C++ | puwit fundwal
Kranthi (938) | * Office Automatic software * Artificial Intelligence & Experts system * CAD/CAM Software | 15/10/2016 | | 03 | Object
Oriented Prog.
in C++ | lovely Shavaa
Mayur P.
(940) | Components of objects oriented programming Object Class Data abstraction & Encapsulation Inhentance Polymorphism Dynamic Binding Message Passing | 10/9/16 | | 04 | Object
Oriented Prog.
in C++ | Punit (887) | Memory management operators * Malloc(), calloc(), Realloc() & free() * New 4 deleted operated | 22-10-16 | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|---------------------------------|----------------------------|--|-----------------| | 05 | Object Oriented
Prog. in C++ | Yash Dinesh
(888) | Functions * Inline function * Friends function | 22-10-16 | | 06 | Object Oriented
Prog. in C++ | Priyam Mittal
(889) | Overloading * Operated overloading * Function overloading * Binary & binary operated | 22-10-16 | | 07 | Object Oriented
Prog. in C++ | Annol Ahlu-
walia (902) | Construction & distructor * Inline constructor * Parametensed constructed * Copy constructed | 10-9-16 | | 08 | Object Oriented
Prog. in C++ | sagar Chaudhary
(903) | Type Corression * Basic to class type * Class type to basic type * Class type to another class type | 10-9-16 | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|------------------------------------|------------------------|---|-----------------| | 09 | Object
Oriented Prog.
in C++ | Jay shree K. | Polymorphism * Runtime Polymorphism * Compile time Polymorphism | 10-9-16 | | 10 | Object
Oriented Prog.
in C++ | p. sri (920) | Interistance * Private, protected & public * Classification of interitance | 24-9-16 | | 11 | Object
Oriented Prog.
in C++ | Karri Santosh
(921) | Pointers * Basic class pointer * Base class objects * Desired classobjecte | 24-9-16 | | 12 | Object
Oriented Prog.
in C++ | Pontapoli 6.
(922) | Application with files * File stream classes * Steps of file operators | 24-9-16 | | 13 | Object
Oriented Prog.
in C++ | Crideon John
(927) | Template * Need of template * Class template * Function template | 24-9-16 | | | | _ | | _ | |--------------|-------|------|-------|------| | \mathbf{H} | loch | Son | nacta | r '\ | | D. | ICUI. | OCII | neste | -J | | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|------------------------------------|-----------------------|--|-----------------| | 14 | Object
Oriented Prog.
in C++ | Anurag Kundu
(928) | * Principle of exciption handing * Keywords of Ecception handling * Exception handsing Mechanism | 24-9-16 | | 15 | Object
Oriented Prog.
in C++ | Ayush man
(929) | * Interator * Algorithm * Containers | 24-9-16 | | 16 | Object
Oriented Prog.
in C++ | Zafar Heider
(951) | About ANSI & Turbo C++ * Innovative data types * New type casting operators * Name space scope | 24-9-16 | | 17 | Object
Oriented Prog.
in C++ | sandhya
(933) | Data structure * Stack * Qucue * Linkid list | 15-10-16 | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan | S.No Subject | Name of Student | Seminar Topic | Date of Seminar | |---------------------------------|--------------------|--|-----------------| | 18 Object Oriented Prog. in C++ | Karthik G.P. (935) | C++ & Memory * Tiny * Small * Medium * Compact * Large * Huge | 15-10-16 | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan mr Symit Gupla | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|----------------------------|-------------------------|---|-----------------| | 01 | Manufacturing
Processes | | Importance of Manufacturing * Economic definition of manufacturing * Technological definition of manufacturing * Survey of manufacturing process | 27-8-2016 | | 02 | Manufacturing
Processes | Rohit K. Saini
(859) | Foundry Technology * Pattern practices * Types of patterns * Allowances & materials * Moulding sand * Sand testing | 27-8-2016 | | 03 | Manufacturing
Processes | _ | * Green moulding * Dry and loam moulding * Pit and floor moulding * Permanent moulding * Carbon dioxide moulding | | | 04 | Manufacturing
Processes | | * Fundamental of metal casting * Types of casting * Casting alloys * Casting defects * Design of casting | | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|----------------------------|-----------------|--|-----------------| | 05 | Manufacturing
Processes | | Metal joining process * Introduction * Types of joints * Soldering * Brazing * Adhesive bonding | | | 06 | Manufacturing
Processes | | * Principle of welding * Classification of welding * Types of welding - Arc welding - Gas welding - Resistance welding | | | 07 | Manufacturing
Processes | | * Atomic hydrazone * Ultrasonic * Plasma and laser * Electron beam * Explosive welding | | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|----------------------------|-----------------|---|-----------------| | 08 | Manufacturing
Processes | | Forming processes * Elastic & plastic deformation * Concept of strain hardening * Hot and cold working | | | 09 | Manufacturing
Processes | | * Rolling * Rolling principle * Extrusion * Wire and tube drawing | | | 10 | Manufacturing
Processes | | * Method of forging * Forging hammers and presses * Principle of forging tools design * Forging operations | | | 11 | Manufacturing
Processes | | * Shearing, drawing * Squeezing, blanking * Piercing, deep drawing * Coining and embossing | | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|----------------------------|-----------------|--|-----------------| | 12 | Manufacturing
Processes | | * Powder manufacturing * Mechanical pulverization * Properties of metal powders * Compacting of powders sintering * Advantages and application | | | 13 | Manufacturing
Processes | | * Introduction * Subtractive processes * Additive processes * Virtual prototypes * Applications | | | | Manufacturing
Processes | | * Introduction * Classification of plastic * Ingredients of moulding compounds * General properties of plastics | | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|----------------------------|-----------------|---|-----------------| | 15 | Manufacturing
Processes | | Plastic part manufacturing processes * Compression moulding * Transfer moulding * Injection moulding * Extrusion moulding * Blow moulding etc. | | | | | | | | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|-----------------------|--------------------------------|---|-----------------| | 01 | Mechanics of
Solid | Parus Sureshbai
paper (830) | * Types of stress and strain * Explain thermal stress * Shearing stress and strain * Linear Elasticity | 618116 | | 02 | Mechanics of
Solid | Vinay Kuman
(832) | * Hooks law for isotropic material * Yield points * Ultimate and breaking stress * Factor of safety * Poison ratio * Equation of equilibrium (static) | 6/8/16 | | 03 | Mechanics of
Solid | Vinay Kuman
(836) | * Calculation of stress in single solid bar * Calculation of stress in multi stepped bar * Free body diagram for composite bars. | 6 8 16 | | 04 | Mechanics of
Solid | Nitin
(839 | Stress on undenied plane Normal stress calculation Principle plane angle calculation Difference b/w principal and normal stress | 13/8/16 | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|-----------------------|--|---|-----------------| | 05 | Mechanics of
Solid | Akshey Anand
(840) | * Tension and compression stress calculation * Principle stress and strain * Stress and strain transfer nation concept equivalent bending and twisting motion | 13/8/16 | | 06 | | Pathan Fardinkhan
Samiullakhan
(844) | * Shear strain theory * Von misses theory * Strain energy theory | 13/8/16 | | 07 | Mechanics of
Solid | himanghu pramod
Kuman gawa.
(849) | Shear force and bending moment diagram * Types of beam * Types of lateral load * Types of support * Equilibrium condition * Relation b/w shear forces and bending moment | 2018/16 | | 08 | Mechanics of
Solid | Vidhan Vivek
Kokane
(850 | * Cantilever with point local * Cantilever with uniformly distributed local * Simply supported beam with point load * Simply support beam with U.D.L | 208/16 | | | _ , | _ | | ^ | |----|------|--------|--------|-------| | R | lach | San | nester | ٠ _ ٠ | | D. | | . 0611 | ICOLCI | -0 | | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|-----------------------|-------------------------------------|--|-----------------| | 09 | Mechanics of
Solid | Sai Siva ganes»
Bezawada
(852 | * Members subjected to flexural load * Theory of simple bending * Moving load concentration * Load distribution pattern | 2018/16 | | 10 | Mechanics of
Solid | Metan Jaju
(912) | * Equation of bending * Bending stress calculation for I section * Bending stress calculation for T section * Bending stress calculation for Z section | 17-9-16 | | 11 | Mechanics of
Solid | chinnay seth | * Shear stress equation * Vacation of shear stress * Shear stress analysis for I section * Shear stress analysis for T section | 17-9-16 | | 12 | Mechanics of
Solid | Prabudha Chakra
borty (915) | * Strain energy in bending * Strain energy in Torsion * Strain energy in shear * Strain energy in Torsion * Strain energy in Torsion * Strain energy in Compression | 17-9-16 | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|-----------------------|------------------------|---|-----------------| | 13 | Mechanics of
Solid | Priyanka T. (916) | Torsion in shaft * Torsion equation * Variation torsion with twisting angle * Torsion in solid & hollow shaft * Power transmission equation | 17-9-16 | | 14 | Mechanics of
Solid | Sumeer K.
(918) | * Types of column * Fixities condition of column * Crippling and bucking load * Euler formulae * Equivalent length | 17-9-16 | | 15 | Mechanics of Solid | Bodala Vishal
(919) | * Bucking stress for both and pin condition * Bucking stress for one end pin other fixed * Bucking stress for both and fixed * Bucking stress for acentric loading (Rankine formula) | (7-9-16 | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|--|-----------------|--|-----------------| | 01 | Material
Science and
Engineering | | A atomic structure of Metals * Crystal structure * Crystal lattice - BCC - FCC - HCP | | | 02 | Material
Science and
Engineering | | * Miller indices - Atomic planes - Directions * Polymorphism and allotropy * Crystal imperfection | | | 03 | Material
Science and
Engineering | | Theories of plastic deformation * Slip phenomenon * Twinning & dislocations * Identification of crystallographic possible slip planes * Direction in FCC, BCC, HCP | | | 04 | Material
Science and
Engineering | | Recovery and recrystallization * Recovery * Recrystallization * Preferred orientation causes Effects on the property of metal | | | | - | _ | | |----|--------|------|---------| | | looh | Samo | otor - | | D. | ICUII. | Seme | ester-3 | | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|--|-----------------|--|-----------------| | 05 | Material
Science and
Engineering | | * Classification * Solidification of metals * Solidification of some typical alloys | | | 06 | Material
Science and
Engineering | - | Mechanism of crystallization * Nuclear formation * Crystal growth | - | | 07 | Material
Science and
Engineering | | * General principle of phase Transformation * Phase rule and equilibriums diagram * Equilibrium diagram of binary system * Binary isomorphous alloy system | | | 08 | Material
Science and
Engineering | | # Iron carbon * Phase Transformation * Transformation of austenite into pearlite * Martensite transformation in steel | | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|--|-----------------|---|-----------------| | 09 | Material
Science and
Engineering | | * Engineering properties and their measurements * Principle & application of- annealing, hardening, normalizing, tempering | | | 10 | Material
Science and
Engineering | · | # Its measures * Variables * Effecting hardenability * Methods for determination of hardenability | | | 11 | Material
Science and
Engineering | | * Heat treatment steel * Plain carbon steel * Cast irons * Non ferrous metals & alloys | | | 12 | Material
Science and
Engineering | | Chemical heat treatment of steels * Physical carburizing * Nitriding * Cyanidin * Carbo nitriding | , | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|--|-----------------|--|-----------------| | 13 | Material
Science and
Engineering | | * Alloying elements * Alloying elements * Silicon, Manganese * Nickel, chromium * Molybdenum, cobalt * Titanium & aluminium | | | 14 | Material
Science and
Engineering | | * Structure classes of steel * Classification of steel * BIS Standards | | | 15 | Material
Science and
Engineering | | * Various fibre and matrix materials * Basic composite manufacturing methods * Application of composite materials | |